Symmetric Approximation Arguments for Monotone Lower Bounds without Sun owers

نویسنده

  • Christer Berg
چکیده

We propose a symmetric version of Razborov's method of approximation to prove lower bounds for monotone circuit complexity. Traditionally, only DNF formulas have been used as approximators, whereas we use both CNF and DNF formulas. As a consequence we no longer need the Sun-ower lemma that has been essential for the method of approximation. The new approximation argument corresponds to Haken's recent method for proving lower bounds for monotone circuit complexity (counting bottlenecks) in a natural way. We provide lower bounds for the BMS problem introduced by Haken, Andreev's polynomial problem, and for Clique. The exponential bounds obtained are the same as the previously best known for the respective problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations

We obtain non-symmetric upper and lower bounds on the rate of convergence of general monotone approximation/numerical schemes for parabolic Hamilton Jacobi Bellman Equations by introducing a new notion of consistency. We apply our general results to various schemes including finite difference schemes, splitting methods and the classical approximation by piecewise constant controls.

متن کامل

The monotone circuit complexity of Boolean functions

Recently, Razborov obtained superpolynomial lower bounds for monotone circuits that lect cliques in graphs. In particular, Razborov showed that detecting cliques of size s in a graph dh m vertices requires monotone circuits of size .Q(m-'/(log m) ~') for fixed s, and size rn ao°~') for ,. :[log ml4J. In this paper we modify the arguments of Razborov to obtain exponential lower bounds for ,moton...

متن کامل

Potential of the Approximation Method

Since Razborov, based on the approximation method, succeeded to obtain a superpolynomial lower bound on the size of monotone circuits computing the clique function, much effort has been devoted to explore the method and derive good lower bounds[K, NM, R1, R2, RR]. Employing the approximation method, Alon and Boppana[AB] obtained an exponential lower bound for monotone circuits computing the cli...

متن کامل

Potential of the Approximation Method 1

Developing some techniques for the approximation method, we establish precise versions of the following statements concerning lower bounds for circuits that detect cliques of size s in a graph with m vertices: For 5 s m=4, a monotone circuit computing CLIQUE(m; s) contains at least (1=2)1:8 min( p s 1=2;m=(4s)) gates: If a non-monotone circuit computes CLIQUE using a \small" amount of negation,...

متن کامل

Finite Limits and Monotone Computations: The Lower Bounds Criterion

Our main result is a combinatorial lower bounds criterion for monotone circuits over the reals. We allow any unbounded fanin non-decreasing real-valued functions as gates. The only requirement is their "local-ity". Unbounded fanin AND and OR gates, as well as any threshold gate T m s (x 1 ; : : : ; x m) with small enough threshold value minfs; m ? s + 1g, are simplest examples of local gates. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997